Passivity-Based Control of a Doubly Fed Induction Generator System under Unbalanced Grid Voltage Conditions

نویسندگان

  • Jiawei Huang
  • Honghua Wang
  • Chong Wang
  • Frede Blaabjerg
چکیده

According to the theory of passivity-based control (PBC), this paper establishes a port-controlled Hamiltonian system with dissipation (PCHD) model for a doubly fed induction generator (DFIG) system under unbalanced grid voltage conditions and proposes a method of interconnection and damping assignment passivity-based control (IDA-PBC) of the system under such conditions. By using this method, the rotor-side converter and grid-side converter can be controlled simultaneously in order to improve fault ride-through capability of the DFIG system. Simulation results indicate that this IDA-PBC strategy effectively suppresses fluctuations of output current and power in the DFIG system during unbalanced grid voltage sag/swell, enhances dynamic performance, and improves the robustness of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition

This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...

متن کامل

Reactive and Active Power Control of Grid WECS Based on DFIG and Energy Storage System under both Balanced and Unbalanced Grid Conditions

This paper focuses on improving the active and reactive power control of Wind Energy Conversion System (WECS) by employing the Battery Energy Storage System (BESS) and controlling the frequency and voltage regulation instantaneously. The proposed power control scheme is composed of two control loops so that they are implemented and designed for active power control and controlling the reactive ...

متن کامل

Low Voltage Ride Through Enhancement Based on Improved Direct Power Control of DFIG under Unbalanced and Harmonically Distorted Grid Voltage

In the conventional structure of the wind turbines along with the doubly-fed induction generator (DFIG), the stator is directly connected to the power grid. Therefore, voltage changes in the grid result in severe transient conditions in the stator and rotor. In cases where the changes are severe, the generator will be disconnected from the grid and consequently the grid stability will be attenu...

متن کامل

A model-based PDPC method for control of BDFRG under unbalanced grid voltage condition using power compensation strategy

Brushless doubly fed reluctance generator (BDFRG) has been recently suggested as a wind generator. Different control methods are presented in literature for the BDFRG, but there is a gap on control under unbalanced grid voltage condition (UGVC). This paper presents a predictive direct power control (PDPC) method for the BDFRG under UGVC. The proposed PDPC method is based on power compensation s...

متن کامل

A Combined Vector and Direct Power Control for AC/DC/AC Converters in DFIG Based Wind Turbine

The doubly-fed generators (DFIG) have clear superiority for the applications of large capacity and limited-range speed control case due to the partially rated inverter, lower cost and high reliability. These characteristics enable the doubly-fed wound rotor induction machine to have vast applications in wind-driven generation.In this paper Combined Vector and direct power control (CVDPC) strate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017